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Abstract

Intangible assets (e.g. intellectual property) have unique characteristics compared

to physical capital; they are scalable and exhibit spillover effects. This paper develops

a structural model to empirically test these features of intangible assets. I introduce

intangible capital into the production function as an additional factor input and ex-

ternal knowledge as a productivity shifter. I estimate production functions at the firm

level including labor-augmenting, and Hicks-neutral productivity without imposing

any parametric functional form. My empirical results indicate a positive and signif-

icant impact of intangible capital on a firm’s production. This return to intangibles

increases with firm size in all sectors, suggesting that intangible capital exhibits scala-

bility. Moreover, knowledge spillovers increase firm productivity, and the extent of this

increase varies depending on firm size, and sector. Large firms and firms in the health

sector tend to benefit more from their rival’s knowledge stock. Additionally, I reveal

that markups rise with a firm’s intangible intensity, suggesting a potential explanation

for the recent rise in market concentration.
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1 Introduction

Intangible capital has become an important part of firms’ capital stock over the last few

decades (Corrado et al. (2005), Hulten and Hao (2008)). Intangible assets encompass a

diverse range of components, including, but not limited to, patents, software, databases,

product design, firm-specific human capital, organizational structure of the company, and

distribution systems. It is named ’capital’ because firms invest in them to produce more

output today and in the future. They are ’intangible’ due to their lack of physical presence,

a characteristic shared by all the examples above.

What sets intangible capital apart from physical capital is its non-rivalry in use feature

due to its lack of physical presence. Intangible capital can be interpreted as pieces of infor-

mation, and firms require a storage medium to use them in their production (Crouzet et al.

(2022)). The medium can be in the form of capital (a computer to use software), a docu-

ment (for a patent or a design), or a person (for an innovation). This unique feature allows

firms to use the same intangible capital in multiple production processes simultaneously.

To illustrate this, consider a company where the product’s design is transmitted to various

machines for production. These machines simultaneously execute the commands received

through software. The software, representing intangible capital, is employed in different pro-

duction processes at the same time. In contrast, each machine, a form of physical capital,

can only participate in the production process one at a time. This non-rival characteristic

of intangible assets not only sets them apart but also empowers firms with scalability and

enables economies of scale.

While intangible assets are utilized simultaneously across different production processes

within a firm, this doesn’t prevent other firms from imitating the same intangible capital in

their own businesses by copying algorithm or acquiring information, for example. This gives

rise to a second characteristic of intangibles, known as limited excludability (Crouzet et al.

(2022)). Patents and copyrights provide a property right for firms to protect their ideas

and creations. However, it’s important to recognize that even with a patent in place, the

benefits of these intangibles can often extend beyond the patent holder. Other firms can still

benefit indirectly from the patented idea in various ways. They may explore the patented
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technology for insights, develop their own innovations, or build complementary products or

services. The limited excludability feature, therefore, generates a spillover effect across firms.

Intangible capital consists mainly of two parts: knowledge capital and organizational

capital (Peters and Taylor (2017a)). The knowledge capital is the intangible value of a

company, comprising its knowledge, learned techniques, procedures, and innovations. Firms

invest in research and development (R&D) to expand their knowledge stock, aiming to

generate product or process innovation.

The organizational capital, on the other hand, comprises the intangible assets within a

company, including its management practices, workforce expertise, culture, internal systems,

and external relationships. These elements collectively contribute to the organization’s op-

erational and managerial efficiency. Some examples of organizational capital include IBM’s

extensive system of selling or licensing know-how, Zara’s process of transmitting real time

customers’ choices to its suppliers worldwide, and Amazon’s highly efficient distribution sys-

tems. A common thread among these business processes and practices is that they are not

easily mimicked by competitors (Lev et al. (2016)). The organizational capital cannot be

completely codified and hence transferred to other organizations or imitated by them. (Lev

and Radhakrishnan (2003)). It represents a factor of production that is unique to the firm.

The distinction between knowledge and organizational capital plays a crucial role in

understanding the limited-excludability feature of intangible assets. Since organizational

capital is inherently firm-specific and challenging to transfer, it lacks the limited-excludability

feature of intangibles. In contrast, knowledge capital, which can be acquired or imitated

by other firms, becomes the primary factor through which limited excludability can be

realized (Bloom et al. (2013)). Therefore, the spillovers among firms will predominantly

occur through the knowledge capital, not the organizational capital.

In this paper, I develop a model to estimate the impact of intangible capital on a firm’s

output production, taking into account its scalability, and knowledge spillover effects. Rec-

ognizing that intangibles possess distinct attributes compared to physical capital, I introduce

them as an additional factor input in production, rather than defining capital as the sum

of intangible and physical assets. This approach allows me to estimate output elasticity of
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intangible capital and examine whether this effect varies with firm size, thus providing an

assessment of the scalability of intangibles.

The change in a firm’s intangible capital corresponds to a movement along the production

curve, similar to the other factor inputs. However, the knowledge spillover from other firms

shifts the entire production curve because they are external shocks to the firm’s optimal pro-

duction decisions. I, therefore, introduce knowledge spillover into the production function

as a variable that shifts the firm’s productivity. The shift in productivity through knowl-

edge spillovers can exhibit bias toward some factor inputs. The labor productivity tends

to be more affected by the influence of knowledge spillovers than the other factor inputs.

Doraszelski and Jaumandreu (2018) provide evidence that technological improvements are

biased toward the labor productivity. To address these dynamics, I make a clear distinc-

tion between two types of productivity: Hicks-neutral and labor-augmenting productivity.

My model accommodates these productivity biases, recognizing that knowledge spillovers

may exert a more substantial influence on the labor productivity relative to the other factor

inputs.

I estimate nonparametric production functions that incorporate labor-augmenting and

Hicks-neutral productivity following Demirer (2020) methodology. Rather than relying on

strict parametric assumptions for the production function, I impose a functional form as-

sumption that encompasses the typical parametric models. This allows me to estimate the

intangible elasticity of output for each individual firm, enabling me to test the scalability of

intangibles. I offer two novel contributions on top of Demirer (2020). Firstly, I introduce

intangible capital as an additional factor input within the production function. Second, I ac-

count for the impact of other firms’ knowledge capital on a firm’s productivity. Importantly,

this implies that productivity is not solely determined by an exogenous Markov process but

is also influenced by external knowledge capital.

My estimation results indicate that intangible capital significantly increases the firm’s

output, with the effect becoming more pronounced as the firm’s size increases. This re-

flects the scalability of intangibles. I also conduct an estimation of the effect of knowledge

spillover on firm productivity and find that firms are positively and significantly affected by
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the knowledge capital stock of other firms. This influence depends on both firm size and

the intangible intensity of the firms. Larger firms tend to benefit more from the existing

knowledge stock of other firms, and similarly, the firms in the intangible-intensive sectors

are also able to derive greater benefits from the existing knowledge stock in the economy.

These findings suggest that large firms benefit more from intangible capital, leveraging

its scalability and knowledge spillover features. When large firms invest in intangible assets

at levels comparable to their rivals, they not only produce more output but also outpace

others in production. Given the growing prominence of intangible assets in production over

recent decades, this trend may contribute to an uptick in market concentration. Large

firms, by virtue of their investments in intangible assets, outpace others within their sectors,

amplifying market concentration. A tangible indicator of this heightened concentration is

the observed increase in markup rates. Notably, I illustrate not only a general rise in markup

rates in the US but also a correlation wherein firms with greater investments in intangible

capital tend to charge higher markups.

1.1 Related Literature

This paper contributes to the markup estimation literature using production function esti-

mation (Hall (1988), Loecker and Warzynski (2012), De Loecker et al. (2020), Raval (2022)).

This literature defines the markup as a ratio of flexible input elasticity to the flexible input

share in revenue using a cost-minimization problem. Since the introduction of intangible

capital into the production function affects output elasticities, it also affects the markup

rates that firms charge. I demonstrate that firms with higher intangible intensity tend to

charge higher markup rates, which aligns with the central role of intangible assets. In-

tangibles like organizational or knowledge capital significantly reduce firms’ marginal costs

(De Ridder (2019)). Consequently, firms can charge higher markups as the markup is price

over marginal cost. The recent surge in markup rates appears to be primarily driven by

intangible-intensive firms and sectors, such as high-tech and healthcare. Furthermore, I es-

timate the weighted average of markups and find lower aggregate markups compared to the

literature.
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I contribute to the firm level intangible capital literature (Haskel and Westlake (2018),

Lev and Radhakrishnan (2005), Corrado et al. (2009), Crouzet et al. (2022)). While existing

literature assumes that intangible capital is scalable and exerts spillover effects on other firms,

these assumptions haven’t been rigorously tested using empirical data. I complement this

literature by providing an estimation method and by empirically estimating these features

using firm-level data.

This paper contributes to the knowledge spillover literature (Bernstein and Nadiri (1988),

Bloom et al. (2013), Henderson et al. (2005)). The conventional approach has been to

create an external knowledge stock metric and integrate it as an additional factor input

into the production function. Alternatively, they have utilized patent data to estimate its

impact on firm productivity. I contribute to the literature introducing the external knowledge

capital into the production function as a productivity shifter, inspired by endogenous growth

literature Romer (1990), rather than another factor input.

This paper is organized as follow: Section 2 outlines the model and assumptions required

to estimate the model. Section 3 explains how I identify output elasticities, markup and

the effect of knowledge spillover on the firm’s productivity. Section 4 introduces the data

and estimation strategy. Section 5 presents the results of production function estimation.

Section 6 discusses the different robustness checks. Section 7 concludes.

2 Model

This section presents the production function employed by firms. I follow Demirer (2020)

for the model and estimation setup. I extend his paper adding intangible capital into the

production function and controlling for knowledge spillovers across firms.

2.1 Production Function

Firm i produces output at year t with the following production function

Yit = Ft(Kit, K
int
it , ωL

itLit,Mit)exp(ω
H
it )exp(ϵit) (2.1)
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where Yit is firm’s output, Kit is physical capital , K
int
it is intangible capital, Mit is material,

Lit is labor, and ωL
it ∈ R is labor-augmenting productivity. ωL

itLit can be interpreted as

effective labor. Labor productivity is not the only productivity in the production process.

ωH
it ∈ R is Hicks-neutral productivity, increasing firm output for any given set of factor

inputs. ϵit ∈ R represents an exogenous random shock to the production.

The model encompasses two types of production inputs: predetermined and flexible

inputs. Physical and intangible capital are classified as predetermined variables. Firms

decide their levels prior to the beginning of the year. This decision affects future production.

In contrast, material and labor are assumed flexible inputs. Firms take their flexible input

decision each year in order to minimize their production cost given their information set,

denoted by Iit. The information set includes labor augmenting productivity, Hicks-neutral

productivity, past physical and intangible capital, and past information sets. I assume that

the information set is orthogonal to the random shock, i.e. E[ϵit | Iit] = 0. Therefore, the

random shock represents a measurement error different from the productivity shocks and is

not observed by the firm.

The input prices are determined in a perfectly competitive market, yielding a constant

input prices across firms given a year. However, I allow for imperfect competition in the

output market, leading to a market power. The firms in the output markets are able to

charge markups over their marginal costs.

A distinctive feature of the model is to incorporate intangible capital into the produc-

tion function. The inclusion of intangible capital as another factor input is crucial, as it

allows for a representation of the economies’ dependence on knowledge, innovation, and

non-physical assets. Intangible capital, encompassing elements such as intellectual property

and organizational knowledge, plays an important role in the production function by cap-

turing the increasingly significant contributions of non-physical assets to the firm’s output

(Corrado et al. (2005)). This role of intangible assets becomes even more pronounced with

technological advancements, particularly in recent decades.

The exposure to intangible capital reveals sectoral differences and possesses a time-

varying effect on the firm’s production (Crouzet and Eberly (2019)). These variations over
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time and across industries are not unique to intangible capital; instead, other factor inputs

also exhibit similar patterns. As an example, Autor et al. (2020) highlights a decrease in the

labor share within production. I, therefore, allow for production functions to be industry-

specific and time-varying meaning that firms within a sector share a common production

function, which, however, evolves dynamically over time. Industry and time are not the only

sources of heterogeneity in production, a substantial cross-firm heterogeneity also exists. For

instance, large firms tend to be more capital-intense whereas small firms exhibit a greater

labor intensity (Holmes and Schmitz (2010)). Non-parametric production function enables

me to control for the cross-firm heterogeneity by incorporating factor inputs.

Technological change, with its inherent potential to uniformly enhance the productivity of

all factors of production, can also introduce biases favoring specific factor inputs. To navigate

this multi-dimensional productivity, I choose to introduce labor-augmenting productivity

into the production function along with Hicks-neutral productivity. My empirical strategy

accommodates only one flexible factor input productivity. This decision is in line with the

seminal paper of Doraszelski and Jaumandreu (2018), which reveals that technological change

is biased toward labor-augmenting productivity. Second, the decision is supported by the

empirical findings that, labor costs exhibit the most variation among factor inputs across

firms, implying a substantial unobserved heterogeneity within labor input. Third, an integral

part of intangible capital is knowledge capital, characterized by its limited excludability.

This characteristic allows workers across different companies to benefit from the research

conducted by their counterparts. As a result, the spillover effect of intangible assets aligns

most closely with labor productivity.

2.2 Assumptions

This section discusses assumptions of the model to estimate the production function of the

firms. The primary and foundational assumption is the homothetic separability assumption.

This permits to define the labor productivity as a function of observed variables. Addition-

ally, I follow the standard assumption of the industrial organization literature and follow

Levinsohn and Petrin (2003) methodology (LP) to derive the Hicks-neutral productivity as
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a function of factors of production. Lastly, I explicitly define the productivity processes and

formulate the spillover effect of intangible assets.

Assumption 2.1: Weak Homothetic Separability

I assume that the production function has a functional form of:

Yit = Ft(Kit, K
int
it , ht(ω

L
itLit,Mit))exp(ω

H
it )exp(ϵit) (2.2)

where ht(ω
L
itLit,Mit) is a homogeneous function. This assumption states that the production

function is separable into two parts. The physical and intangible capital part is separable

from a homogeneous function of material and effective labor. This might look restrictive

but many of the production functions used in the literature satisfy this assumption. For

instance, the Cobb-Douglas production function has

Yit = Kα
it(K

int
it )β(ωL

itLit)
γM θ

itexp(ω
H
it )exp(ϵit)

h(., .) function, in this case, is (ωL
itLit)

γM θ
it and it is homogeneous and separable from

Kα
it(K

int
it )β. It’s important to note that the Cobb-Douglas has limitations, including a con-

stant output elasticity of factor inputs across firms and fixed elasticity of substitution at

one.

Another commonly used functional form is the Constant Elasticity of Substitution (CES)

production function:

Yit =
(
βkK

σ
it + βI(K

int
it )σ + βl(ω

L
itLit)

σ + (1− βk − βI − βl)M
σ
it

)υ/σ
exp(ωH

it )exp(ϵit)

For CES, h(., .) = βl(ω
L
itLit)

σ + (1 − βk − βI − βl)M
σ
it is homogeneous and separable from

βkK
σ
it + βI(K

int
it )σ. The CES generates a constant elasticity of substitution σ. While the

CES offers greater flexibility compared to the Cobb-Douglas, it still maintains a constant

elasticity of substitution and does not yield a heterogeneous output elasticity of factor inputs

across firms.

Recognizing the limitations of CES and Cobb-Douglas production function, the acknowl-

edgment of homothetic separability assumption introduces a more general and flexible func-

tional form. This assumption establishes a more extensive basis for modeling heterogeneous

production functions.
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Assumption 2.2: Firms minimize their costs

Firms decide their optimal material and labor demands minimizing their costs. As phys-

ical and intangible capital are predetermined variables they are not included in the cost

minimization problem. This transforms the problem into a static one. Another advantage

of the cost minimization is that it facilitates to determine the markup levels of firms. As

demonstrated by Loecker and Warzynski (2012), markups are derived from the first-order

conditions (FOC) of the cost minimization problem.

The firms minimize their cost given input prices and output demand

min
Lit,Mit

{
pLt Lit + pMt Mit : Ft(Kit, K

int
it , ht(ω

L
itLit,Mit))exp(ω

H
it )exp(ϵit) ≥ Ỹit

}
where pLt is the wage rate of the workers at time t and pMt is the price of material at time t.

As input market is perfectly competitive, the flexible input prices are constant across firms

but varying over time. Ỹit is the output demand from firm i at time t.

Applying Shepherd’s lemma and homotheticity assumption, the cost minimization prob-

lem induces

M̃it =
Mit

Lit

= rt(ω
L
it) (2.3)

where rt(.) is an unknown function. The proof is in the appendix. The equation posits

that the optimal material-to-labor ratio, M̃it, is solely determined by labor-augmenting pro-

ductivity. It is entirely independent of Hicks-neutral productivity. If the rt(.) function is

invertible, labor-augmenting productivity, ωL
it, can be expressed as a function of flexible in-

put ratio, M̃it. To achieve this inversion of rt(), I require strict monotonicity of the flexible

input ratio in labor-augmenting productivity. I now introduce the third assumption needed

to define the labor productivity as a function of flexible inputs.

Assumption 2.3: Elasticity of substitution between effective labor and material

is less than 1 or greater than 1.

The elasticity of M̃it with respect to ωL
it is equal to −σt(ω

L
itLit,Mit)+1, where σt(ω

L
itLit,Mit)

is the elasticity of substitution between effective labor and material. The proof is in the

appendix. When σt(ω
L
itLit,Mit) > 1 or σt(ω

L
itLit,Mit) < 1, M̃it is always increasing or

decreasing function of ωL
it, implying that M̃it is strictly monotone in ωL

it. Thanks to this
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assumption, I can express ωL
it as a function of M̃it , represented by

ωL
it = r−1

t (M̃it) (2.4)

Unobserved labor productivity can now be characterized as an unknown function of the

material-to-input ratio. Another unobserved variable in the production function is the Hicks-

neutral productivity. In order to characterize it as a function of factor inputs I introduce

the following monotonicity assumption.

Assumption 2.4: Material demand is monotone in Hicks-neutral productivity

I assume following Levinsohn and Petrin (2003) that

Mit = st(Kit, K
int
it , ωL

it, ω
H
it ) (2.5)

where st(.) is a strictly increasing function in ωH
it . This states that a firm’s material de-

mand increases with its productivity. In other words, more productive firms demand higher

materials. This framework introduces two notable innovations, extending the framework

of Levinsohn and Petrin (2003). Firstly, I incorporate the labor-augmenting productivity

akin to Demirer (2020), thereby accounting for the influence of labor productivity on the

marginal product of materials. Second, I introduce intangible capital in conjunction with

physical capital as it augments the state-space.

Since material is strictly increasing in Hicks-neutral productivity, I can invert productivity

as follows:

ωH
it = s−1

t (Kit, K
int
it , ωL

it,Mit)

The Hicks-neutral productivity is expressed as a function of factor inputs, excluding ωL
it.

From equation 2.4, the labor augmenting productivity is only a function of material to input

ratio. Substituting this, the equation becomes

ωH
it = s−1

t (Kit, K
int
it , r−1

t (M̃it),Mit) = s̄t(Kit, K
int
it , M̃it,Mit) (2.6)

where s̄t(.) is an unknown function. ωH
it becomes a function of factor inputs, only determined

by physical capital, intangible capital, material-to-labor ratio and materials. As a result, it is

observable by the econometrician. The next two assumptions are used in my estimation part.

I will begin by explaining the model’s timing assumption and then introduce productivity
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shocks.

Assumption 2.5: Physical and intangible capital are predetermined variables

The levels of physical and intangible capital are determined in the preceding year through

the following equations:

Kit = κ1t(Kit−1, Iit−1)

Kint
it = κ2t(K

int
it−1, I

int
it−1)

where Iit represents the physical investment and I intit intangible investment of firm i within

year t. κ1t(.) and κ2t(.) are unknown functions. This allows for adjustment costs and fixed

costs of investment. This timing assumption implies that firms start to fully realize the

benefits of physical and intangible investments within a year in their production processes.

This has a time-to-build investment model perspective (Kydland and Prescott (1982)).

Assumption 2.6: Productivity shocks have a first-order Markov process

The productivity shocks follow a first-order Markov process:

P (ωL
it, ω

H
it

∣∣∣ It−1) = P (ωL
it, ω

H
it

∣∣∣ ωL
it−1, ω

H
it−1,

∑
j∈I,j ̸=i

Rjt−1)

where Rjt is the knowledge capital stock of company j at time t. The joint probability of

productivity has a first-order Markov process.This framework accounts for the knowledge

spillover among firms, where the productivity of company i can be influenced by the knowl-

edge capital stock of other companies. Thus, the Markov process is contingent not only on

the firm’s own history but also on the cumulative knowledge capital stocks of other firms.

Intuitively, when a company develops a new technology other firms can benefit from this

knowledge (Bloom et al. (2013)). This increases the other firms’ probability of having higher

productivity that operates in similar industries. (Bernstein and Nadiri (1988)) This is driven

by the inherent nature of knowledge capital which has limited excludability. Firms can only

partially exclude others from utilizing their knowledge.

I assume productivity shocks have a continuous function. Using the Skorohod represen-

tation of random variables, the labor productivity process can be defined as

ωL
it = g1(ω

L
it−1, ω

H
it ,

∑
j∈I,j ̸=i

Rjt−1, u
1
it), u1

it | ωL
it−1, ω

H
it ,

∑
j∈I,j ̸=i

Rjt−1 ∼ Uniform(0, 1)
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u1
it can be seen as an innovation term for productivity. Compared to the standard productiv-

ity assumption, this shock is not separable from past productivity and spillover effect. It has

a uniform distribution conditioning on past productivity and spillover effects. This allows

me to define the control variables in the empirical part. Alternatively, u1
it can be interpreted

as a firm’s productivity rank after controlling for its past productivity, and spillover effect

through knowledge capital.

Similarly, I can define Hicks-neutral productivity as

ωH
it = g2(ω

L
it−1, ω

H
it−1,

∑
j∈I,j ̸=i

Rjt−1, u
1
it, u

2
it), u2

it | ωL
it−1, ω

H
it ,

∑
j∈I,j ̸=i

Rjt−1, u
1
it ∼ Uniform(0, 1)

u2
it shares similar characteristics with u1

it. By the Skorohod representation, u2
it is uniformly

distributed conditioning on the past productivity, spillover effects, and innovation term of

labor-augmenting productivity. u2
it represents the Hicks-neutral productivity rank of a firm

after accounting for the past productivity and spillover effects.

3 Estimation Strategy: A Control Variable Approach

I use the control variable approach by Imbens and Newey (2009) to estimate the production

function of the firms. This method constructs control variables to solve for endogeneity

problem of the structural models. The key advantage of this method is its ability to identify

and estimate models featuring non-separable, multidimensional disturbances. This is the

case in my model as I have two unobserved, non-separable productivity disturbances. The

standard proxy variable approaches pioneered by Olley and Pakes (1996) accommodate only

a single, separable disturbance, rendering them inapplicable in my model.

A control variable is characterized by the conditional distribution function of the endoge-

nous variable conditioning on the instruments. The control variables have two key charac-

teristics: they are strictly monotone in the endogenous variable and independent from the

instruments. I will now describe my control variables for labor-augmenting and Hicks-neutral

productivity using the assumptions of the model.
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I showed that M̃it = rt(ω
L
it) in the previous section. Substituting the productivity process

M̃it = rt
(
ωL
it

)
= rt

(
g1
(
ωL
it−1, ω

H
it ,

∑
j∈I,j ̸=i

Rjt−1, u
1
it

))
= rt

(
g1

(
r̄t
(
M̃it−1), s̄t(Kit−1, K

int
it−1, M̃it−1,Mit−1),

∑
j∈I,j ̸=i

Rjt−1, u
1
it

))
= r̃t

(
Wit−1,

∑
j∈I,j ̸=i

Rjt−1, u
1
it

)
where r̃t(.) is an unknown function, and Wit−1 = (Kit−1, K

int
it−1, M̃it−1,Mit−1). Notice that

M̃it is strictly monotone in u1
it because i) ωL

it is strictly monotone in u1
it by elasticity of

substitution assumption and ii) M̃it is strictly monotone in ωL
it by the construction of g1t(.)

function. Furthermore, from equation 2.7 and timing assumption, u1
it is independent of

Wit−1 and
∑

j∈I,j ̸=i Rjt−1. The proof is in the appendix. These are two conditions required

for control variables, i.e. r̃t(Wit−1,
∑

j∈I,j ̸=iRjt−1, u
1
it) is strictly monotone in u1

it and u1
it is

independent of Wit−1 and
∑

j∈I,j ̸=i Rjt−1. As u1
it has already a uniform distribution, the

control variable for labor productivity can be defined as

u1
it = FM̃it|Wit−1,

∑
j∈I,j ̸=i Rjt−1

(
M̃it | Wit−1,

∑
j∈I,j ̸=i

Rjt−1

)
(3.1)

where FM̃it|Wit−1,
∑

j∈I,j ̸=i Rjt−1

(
.
)
is the cumulative distribution function of M̃it conditional on

Wit−1,
∑

j∈I,j ̸=i Rjt−1. That means that conditional on Wit−1,
∑

j∈I,j ̸=i Rjt−1

(
.
)
, material-to-

labor ratio in firm i is greater than firm j if and only if u1
it > u1

jt. In other words, if two

firms have the same past input values, and exposed to a similar sum of knowledge capital

the firm has a higher higher material-to-labor ratio if only if it has a higher u1
it.

I can now express ωL
it as a function of observable inputs

ωL
it = g1

(
ωH
it−1, ω

L
it−1,

∑
j∈I,j ̸=i

Rjt−1, u
1
it

)
= g1

(
r̄t
(
M̃it−1), s̄t(Kit−1, K

int
it−1, M̃it−1,Mit−1),

∑
j∈I,j ̸=i

Rjt−1, u
1
it

)
= c1t

(
Wit−1,

∑
j∈I,j ̸=i

Rjt−1, u
1
it

)
(3.2)

where c1t(.) is an unknown function. Since I constructed u1
it, the labor productivity can be

defined as a function of factor inputs and control variable.
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One can, similarly, define the control variable for the Hicks-neutral productivity using

the monotonicity assumption,

Mit = st(Kit, K
int
it , ωL

it, ω
H
it )

= st

(
Kit, K

int
it , g1

(
ωL
it−1, ω

H
it ,

∑
j∈I,j ̸=i

Rjt−1, u
1
it

)
, g2
(
ωL
it−1, ω

H
it ,

∑
j∈I,j ̸=i

Rjt−1, u
1
it, u

2
it

))
Substituting equation 2.4 and 2.6 into ωL

it and ωH
it in the equation above, material demand

becomes

Mit = s̃t
(
Kit, K

int
it ,Wit−1,

∑
j∈I,j ̸=i

Rjt−1, u
1
it, u

2
it

)
where s̃t() is an unknown function and Wit−1 is the lag values of factor inputs as previ-

ously defined. u2
it is independent of Kit and Kint

it due to the timing assumption of capitals.

Similarly, its independence from Wit−1 is due to the inclusion of these variables within the

information set of time period t − 1. Additionally, u2
it is also independent of u1

it from pro-

ductivity assumption. These conditions collectively satisfy the independence condition for

the control variable. A more comprehensive proof is in the appendix.

Furthermore, Mit is monotone in u2
it because ωH

it is monotone in u2
it by construction of

c2t(.) function and Mit is strictly increasing in ωH
it by the material demand assumption. Since

two conditions of control variables are satisfied and u2
it is uniformly distributed, the control

variable for Hicks-neutral productivity can be defined as

u2
it = FMit|Kit,Kint

it ,Wit−1,
∑

j∈I,j ̸=i Rjt−1

(
Mit | Kit, K

int
it ,Wit−1,

∑
j∈I,j ̸=i

Rjt−1

)
(3.3)

where F (.) is the CDF of Mit conditional on Kit, K
int
it ,Wit−1,

∑
j∈I,j ̸=i Rjt−1. This implies

that among firms having the same physical and intangible capital, same past factor inputs,

and exposing to the similar aggregate knowledge capital, the one with higher u2
it exhibit

greater material demand.

Using this result, the Hicks-neutral productivity can be constructed as

ωH
it = c2t

(
Wit−1,

∑
j∈I,j ̸=i

Rjt−1, u
1
it, u

2
it

)
(3.4)

where c2t(.) is an unknown function. This implies that conditional on two control variables,

knowledge spillovers from other firms and past factor input variables, there is no variation

in the Hicks-neutral productivity.
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4 Identification

This section outlines how I identify output elasticity of factor inputs, markup charged by

the firms and the effect of knowledge spillovers on firm productivity.

The cost minimization problem, considering material and labor as flexible inputs, leads

to the following equation1

θMit
θLit

=
αM
it

αL
it

(4.1)

where θMit and θLit are output elasticity of material and labor, respectively. αM
it and αL

it denote

the material and labor share in revenue, respectively. This relationship indicates that the

ratio of output elasticity for the flexible inputs is equal to the revenue share of these inputs.

I will leverage this finding to isolate and identify the separate impact of elasticitities.

Before introducing the identification of output elasticities let’s initially define the loga-

rithm of output function as follow

yit = ft(Kit, K
int
it , ht(ω

L
itLit,Mit)) + ωH

it + ϵit

where ft() is the logarithm of Ft() function. Given that ht() function is homogeneous, I

make the assumption that it holds homogeneity of degree one. This allows me to factor

out Lit and define ht(ω
L
itLit,Mit) = Litht(ω

L
it, M̃it). Substituting the labor productivity from

equation 2.4, ht() becomes ht(ω
L
itLit,Mit) = Litht(rt(M̃it), M̃it) = Lith̄t(M̃it) where h̄t(.) is an

unknown function. Note that both components of ht(.) function are dependent on M̃it. This

makes infeasible to fully identify all features of the ht(.) function. However, it will become

apparent that h̄t(.) function will suffice to identify the output elasticities.

Using the h̄t() function I can rewrite the production function as:

yit = ft(Kit, K
int
it , Lith̄t(M̃it)) + ωH

it + ϵit

Building upon this framework, I will now present the first proposition that is necessary to

identify the individual output elasticities.

Proposition 4.1 The sum of labor and material elasticity is equal to

θMit + θLit = ft3(Kit, K
int
it , Lith̄t(M̃it))Lith̄t(M̃it)

1 The proof is in the appendix
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where ft3(.) is the derivative of ft(.) with respect to the third argument.

The proof is in the appendix. The proposition demonstrates that derivative of ft(.) with

respect to its third argument is equivalent to the sum of flexible input elasticities. Impor-

tantly, I do not need to identify ht(.) function as the sum of elasticities do not depend on

the derivative of ht(). Instead, the identification of h̄t(.) is sufficient to determine the sum

of elasticities.

Substituting equation 4.1 into the sum of elasticities I can identify the labor and material

elasticity as

θLit =
αL
it

αL
it + αM

it

ft3(.)Lith̄t(M̃it)

θMit =
αM
it

αL
it + αM

it

ft3(.)Lith̄t(M̃it) (4.2)

This implies that the sum of material and labor elasticity is distributed based on their

respective revenue shares. Since the input shares, represented by αit, are directly observable

in the data, there is no need for additional estimation to determine them. Once the sum

of elasticities is identified, it becomes straightforward to deduce the individual labor and

material elasticities.

Following Loecker and Warzynski (2012) the first order condition of the cost minimization

problem yields the expression for markup as follow

µit =
θMit
αM
it

=
θLit
αL
it

(4.3)

where µit stands for the markup rate that firm i charges in year t. This equation indicates that

the markup rates can be derived using either the labor elasticity or the material elasticity.

When dividing the elasticity of flexible input by its revenue share, the resulting markup rates

should be identical. By using the elasticities from equation 4.2, I determine the markup rates

at the firm level.

I identify the output elasticity of physical and intangible capital through a similar strat-

egy.
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Proposition 4.2 The output elasticity of physical and intangible capital is

θintit = ft2(Kit, K
int
it , Lith̄t(M̃it))K

int
it

θKit = ft1(Kit, K
int
it , Lith̄t(M̃it))Kit (4.4)

where ft2(.) and ft1(.) is the derivative of ft(.) with respect to the second and first argument,

respectively.

This proposition asserts that the output elasticity of physical and intangible capital can

be represented as the derivative of ft() function with respect to the corresponding type of

capital. Moreover, h̄(.) is sufficient for it. I do not need to characterize ht(.) function.

The following proposition shows how I identify the effect of knowledge spillover on the

firm productivity.

Proposition 4.3 The productivity elasticity of knowledge spillover is

θspilloverit =
∂c2t

(
Wit−1,

∑
j∈I,j ̸=i Rjt−1, u

1
it, u

2
it

)
∂
∑

j∈I,j ̸=i Rjt−1

∑
j∈I,j ̸=iRjt−1

c2t(.)
(4.5)

The effect of knowledge spillover on firm productivity corresponds to the derivative of the

Hicks-neutral productivity function, generated from the control variables, with respect to

the sum of knowledge capital.

5 Data and Empirical Model

This section describes the data used for estimating the model and presents the estimation

strategy.

5.1 Data

I use the U.S. Compustat data to measure firm-level intangible capital and other variables

from financial statements, including sales, materials, number of employees, physical capital,

and industry classification. The Compustat sample covers all public firms in the US from

1975 to 2020. Following the sampling procedures in the literature, I exclude financial firms
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(SIC codes 4900 - 4999), utilities (SIC codes 6000 - 6999), and government (SIC code 9000

and above). I also exclude firms with missing or negative sales, capital, employment, or

SG&A expenditure, and very small firms with a number of employees less than 10. I trim

the variables at the 1% level.

I measure physical capital as the value of deflated property, plant, and equipment. Labor

is the number of employees and output is the deflated net sales. I calculate materials as

deflated cost of goods sold. All the variables is deflated using the BEA industry-specific

price deflators. I now describe how to construct the firm-level intangible capital.

Measurement of Intangible Capital. I construct the intangible capital at the firm level

as outlined in Ewens et al. (2019) (along with insights from other studies such as Lev and

Radhakrishnan (2005), Eisfeldt and Papanikolaou (2014)). Intangible capital consists of two

components: knowledge capital and organizational capital.

I measure knowledge capital based on Research and Development (R&D) expenses. These

R&D investments are recorded as flow variables in Compustat. I convert them into a stock

variable using the perpetual inventory method as follows

Rit = (1− δR&D)Rit−1 +R&Dit (5.1)

where Rit is the knowledge capital of firm i in year t, R&Dit is the firm i’s R&D investment

in year t, and δR&D is the industry-specific R&D depreciation rates based on the estimates

of Ewens et al. (2019). I initialize the value of Ri0 as zero.

I construct organizational capital using Selling, General, and Administrative Expenses

(SG&A). SG&A includes a variety of expenses related to various operating activities. This

approach requires to represent a portion of the total SG&A as organizational investment

(Lev and Radhakrishnan (2003)). To capitalize on the organizational investments, I similarly

adopt the perpetual inventory method, as follows

Oit = (1− δSG&A)Oit−1 + γSG&Ait (5.2)

where Oit is the organizational capital stock of firm i in year t, SG&A is the selling general

and administrative spending of firm i in year t, and γ corresponds to the industry-specific

proportion of SG&A expenses that are allocated to organizational activities. I use industry-

specific estimates of δSG&A and γ following Ewens et al. (2019). I set Bi0 as zero.
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Hence, the intangible capital stock at the firm level can be described as:

Kint
it = Rit +Oit (5.3)

where Kint
it is the firm i’s intangible capital stock in year t. This equation highlights that

intangible capital is the sum of both knowledge and organizational capital.

5.2 Estimation Strategy

This section outlines the estimation procedure for the model. I estimate the production func-

tions for different industries over time, categorizing firms based on Fama-French 5 industry

classification since I use the parameters of intangible capital estimated for the Fama-French

5 industries by Ewens et al. (2019). Due to a small sample size in some sectors I use 7-year

rolling windows.

I defined the logarithm of production function in the identification section as follow

yit = ft(Kit, K
int
it , Lith̄t(M̃it)) + ωH

it + ϵit

I substitute the Hicks-neutral productivity that I constructed using the control variables

(equation 3.4) into the production function

yit = ft(Kit, K
int
it , Lith̄t(M̃it)) + c2t

(
Wit−1,

∑
j∈I,j ̸=i

Rjt−1, u
1
it, u

2
it

)
+ ϵit (5.4)

where E[ϵit | Wit,Wit−1,
∑

j∈I,j ̸=i Rjt−1] = 0 since I have control variables dealing with the

endogeneity problem. I can estimate this estimation equation by minimizing the sum of

squared residuals. But, this is not the only moment condition I have. Using the predeter-

mined assumption of capital I can construct my other moment condition. The error terms in

my productivity assumption was non-separable. Following the The proxy variable approach

used mostly in the literature I can define the productivity as

ωH
it = c3t(ω

H
it−1, ω

L
it−1,

∑
j∈I,j ̸=i

Rjt−1) + υit (5.5)

where c3t(.) is an unknown function, and υit is separable from c3t(.) with E[υit|It−1] = 0.

This is different from the productivity assumption in the previous section because the inno-

vation terms, u1
it, and u2

it, were non-separable and independent whereas υit is separable and
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mean-independent. The separability assumption is mostly used in the production function

estimation.

Using the model’s results and assumptions I can write the Hicks-neutral productivity

as ωH
it = c̄3t(Wit−1,

∑
j∈I,j ̸=i Rjt−1) + υit for an unknown function of c̄3t(.). The production

function can be written as

yit = ft(Kit, K
int
it , Lith̄t(M̃it)) + c̄3t

(
Wit−1,

∑
j∈I,j ̸=i

Rjt−1

)
+ υit + ϵit (5.6)

where E[υit + ϵit|It−1] = 0. Since physical and intangible capital is predetermined variables

I should have E[υit + ϵit|Kit] = 0 and E[υit + ϵit|Kint
it ] = 0. Combining with the moment

condition 5.4, I construct my objective function to minimize as follows

1

N

∑
i

ϵ2it +

(
1

N

∑
i

(ϵit + υit)Kit

)2

+

(
1

N

∑
i

(ϵit + υit)K
int
it

)2

(5.7)

In order to minimize the objective function I need to have the control variables, the functions

of ft(.), h̄t(.), c2t(.), and c̄3t(.). First, I estimate u1
it and u2

it control variables using the

equations 3.1 and 3.3. I use logistic regression to estimate them. It’s important to note

that the outcome variable is not discrete in both cases. I partition them into 500 grids

and I estimate the CDFs at those points with third-order polynomials using the logistic

regression. I then interpolate other points. Second, I first approximate h̄t() using third-

order polynomials. Given h̄t(), I approximate ft(), c2t() and c̄3t() functions with second-

order polynomials. I, then, minimize the moment condition in equation 5.7. After having

the estimates of those functions, I calculate output elasticities, markup and the spillover

effects using the propositions outlined in the identification section. I perform 100 bootstraps

to estimate standard errors for the identified outcomes, treating firms as independent and

resampling them with replacement.

6 Results

I begin by presenting the output elasticity of factor inputs. These results indicate that

the intangible elasticity increases with firm size, suggesting scalability of intangible assets.
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Next, I analyze the impact of external knowledge on firm productivity. Finally, I examine

the markup rates.

6.1 Output Elasticities

Figure 1 illustrates the output elasticity of capital, intangible capital, material, and labor

at each firm-size decile. Firms are ranked by their sales within sector-year level, with 10

representing the largest firms and 1 denoting the smallest ones. I then take the average factor

elasticities within each decile across sector year. The figure reveals that as firm size increases,

intangible elasticity rises, while labor elasticity decreases. Material and capital elasticity, on

the other hand, shows relatively minor fluctuations. These findings are consistent with the

existing literature and emphasize the necessity of non-parametric estimation methods to

capture the heterogeneous cross-firm output elasticity.

Since intangible assets lack a physical presence, firms can efficiently replicate them in

their multiple production processes, yielding greater benefits. I use firm size as a proxy for

the production process of the firms. The figure shows that with the rise in firm size benefit

to intangibles also increases. Specifically, when small firms invest 1% in intangible assets

their output increases around 0.5%, whereas the largest firms reach levels of around 1.05%.

This shows that large firms benefit more from intangible assets, suggesting the scalability

feature of intangible assets.
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Figure 1: Output Elasticity of Capital, Labor, Material, and Intangibles by Firm Size

Note: This figure shows output elasticities by firm decile. The average elasticity for each decile within an

industry year is estimated first, then these estimates are averaged across industry-year bins. The error bars

indicate 95% confidence intervals calculated using bootstrap (100 iterations)

The returns on intangible assets can indeed exhibit sector-specific disparities, and the

observed scalability trend may be contingent upon sectoral characteristics. For instance,

high-tech firms possess the ability to leverage their intangible assets across multiple facets

of production processes, given the inherently intangible nature of the sector. In contrast,

manufacturing firms may not share the same level of versatility in this regard. Consequently,

the documented escalation in intangible elasticity with firm size could be predominantly

attributed to the high-tech sector, with a less pronounced effect in manufacturing.

Figure 2 illustrates that, across all sectors, the return on intangibles tends to increase with

firm size, albeit to varying degrees. For instance, in the health sector, the largest firms exhibit

an elasticity of 1.5, indicative of substantial scalability in intangible capital utilization. In

contrast, in the manufacturing sector, this elasticity stands at 0.5, reflecting a relatively

more modest return on intangible assets. Nevertheless, it is noteworthy that even within the

manufacturing sector, there is still an observable enhancement in the returns on intangible

assets as firm size expands. The return for the smallest firms in manufacturing is around 0.3,

whereas the elasticity for the largest firms is around 0.5. Figure 2 also shows the elasticities
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in the consumer and high-tech sectors, in addition to the health and manufacturing sectors.

All these sectors clearly exhibit a similar pattern: a positive association between firm size

and the return on intangible assets, implying that larger firms, regardless of sector, tend to

capitalize more efficiently on intangible resources.

Figure 2: Output Elasticity of Intangible Capital by Firm Size and Sector

Note: This figure shows output elasticities within a sector by firm decile. The average elasticity for each

decile within an industry-year is estimated first, then these estimates are averaged across years within a

sector. The error bars indicate 95% confidence intervals calculated using bootstrap (100 iterations)

The sector heterogeneity may not be the only factor behind the intangible returns. Dif-

ferent intangible assets might have different scalability levels. As I introduced in the data

section, intangible assets encompass both knowledge and organizational capital, each poten-

tially exhibiting distinct scalability characteristics. To differentiate the impacts of these com-

ponents, I incorporate knowledge and organizational capital separately into the production

function, rather than defining intangible capital as a sum of knowledge and organizational

capital. The modified production function takes the form of

Yit = F (Kit, Rit, Oit, ht(ω
L
itLit,Mit))exp(ω

H
it )exp(ϵit)

where Rit represents the knowledge capital and Oit is the organizational capital. Applying

a similar estimation procedure as outlined in the Estimation section, I compute the output

elasticity of both knowledge and organizational capital.
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Figure 3 reveals that the returns attributed to intangible capital are predominantly driven

by organizational capital, with knowledge capital demonstrating considerably lower elasticity.

The return on organizational capital varies between 0.5 and 1.6 across different firm sizes,

while knowledge capital maintains a relatively stable elasticity of approximately 0.07 across

firms. Furthermore, the elasticity of organizational capital exhibits an increasing relationship

with firm size, whereas knowledge capital maintains a consistent pattern across firm sizes.

These results suggest that the scalability feature of intangible capital is primarily propelled

by organizational capital instead of knowledge capital. It’s important to note that these

findings are specific to the short-term effects on output. The long-term dynamics may differ,

and knowledge capital could potentially yield higher returns over time as it accumulates

and contributes to a firm’s competitive advantage. These results shed light on the current

impact of knowledge and organizational capital on production, illustrating how much output

increases when a firm augments its knowledge or organizational capital by a given percentage.

Figure 3: Output Elasticity of Intangible Components

Note: This figure shows output elasticities of knowledge and organizational capital by firm decile. The

average elasticity for each decile within an industry-year is estimated first, then these estimates are averaged

across the year within industry-year bins.

The substantial short-run return on organizational capital may indeed provide an expla-

nation for why firms tend to allocate a significant portion of their investments to organiza-

tional capital rather than knowledge capital. As depicted in Figure 4, the share of knowledge

capital constitutes only around 15% of the total intangible assets, while the share of orga-

nizational capital accounts for approximately 85%. This allocation remains consistent over

time, despite a slight uptick in the share of knowledge capital.
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Figure 4: Knowledge Capital Share in Intangible Capital

Note: This figure shows knowledge capital share in total intangible capital. The share of knowledge capital

is averaged across firms within a year.

6.2 Knowledge Spillovers

This section presents the influence of knowledge spillovers on firm productivity, estimating

the firm-level productivity elasticity in response to external knowledge. The findings reveal

a consistently positive and statistically significant impact of external knowledge on firm

productivity, indicating that firms gain valuable insights and benefits from their industry

counterparts. Nonetheless, these benefits exhibit notable sectoral variations.

Figure 5 represents the impact of knowledge spillovers across different sectors. It is ev-

ident that firms across various sectors derive advantages from the knowledge stock of their

rivals. Notably, firms in the health sector experience the most substantial gains, while those

in manufacturing witness comparatively modest benefits. High-tech and consumer-oriented

firms also exhibit significant enhancements in their productivity stemming from their com-

petitors’ knowledge. However, it’s noteworthy that the manufacturing sector, while experi-

encing a slight positive effect, fails to achieve statistical significance at the 95% confidence

interval. Intriguingly, despite the health sector’s leading position in benefiting from knowl-
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Figure 5: Knowledge Spillover by Sector

Note: This figure shows the knowledge spillover elasticity computed as a productivity elasticity of external

knowledge in the industry. The firm-level spillover elasticity is averaged across years within a sector. The

error bars indicate 95% confidence intervals calculated using bootstrap (100 iterations)

edge spillovers, it demonstrates a wider confidence interval compared to the high-tech and

consumer sectors. This variance can be attributed to the pronounced heterogeneity within

the health sector, where certain firms experience substantial gains from knowledge spillovers,

while others do not benefit to the same extent.

While sectoral heterogeneity plays a significant role in benefiting from knowledge spillovers,

it is not the sole source of heterogeneity, as evident from the high confidence intervals ob-

served in the health and manufacturing sectors. To provide a more comprehensive under-

standing of this phenomenon, I examine the impact of firm size on the productivity elasticity

of the external knowledge. Figure 6 offers a detailed perspective on the influence of knowl-

edge spillovers on firm productivity, categorizing firms based on their size. The figure unveils

a discernible pattern: larger firms tend to reap more substantial benefits from the existing

knowledge generated within their respective industries. In essence, there exists a positive

correlation between firm size and the impact of knowledge spillovers on firm productivity.
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Figure 6: Knowledge Spillover by Firm Size

Note: This figure shows the productivity elasticity of external knowledge capital by firm decile. The average

elasticity for each decile within an industry-year is estimated first, then these estimates are averaged across

industry-year bins. The error bars indicate 95% confidence intervals calculated using bootstrap (100 itera-

tions)

The small firms appear to derive relatively lower and statistically insignificant benefits from

the knowledge generated by their industry rivals. This relationship highlights the crucial

role of firm size in determining the ability to effectively utilize external knowledge.

6.3 Markup

The scalability feature of intangible assets enables large firms to grow faster, which in turn

can lead to increased market concentration in industries. The best measure to assess market

concentration is the markup rates charged by firms. This section explores the markup rates

and their relationship to intangible assets.

Figure 7 illustrates the average markup charged by a public firm over time. The upward

trend in markup rates has persisted since the 1980s, despite occasional fluctuations. In the

early 1980s, the average markup stood at approximately 1.07, while in recent years, it has
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Figure 7: Average Markup

Note: This figure shows the annual average markup rate. The estimated firm-level markups are averaged

across firms within a year. The error bars indicate 95% confidence intervals calculated using bootstrap (100

iterations)

climbed to around 1.25. This aligns with the existing literature that has also reported a

consistent rise in markups over the past few decades. My markup rates are closer to the

markups estimated in De Loecker et al. (2020) when they control for selling, general, and

administrative expenses in their production function.

Figure 8 displays the average markup rates across the Fama-French 5 industries. An

increasing trend is evident in all sectors, with the health and high-tech sectors emerging

as the primary drivers behind this markup rise. In the early 1980s, these sectors exhibited

similar rates with minor variations. However, over time, high-tech and particularly the

health sector diverged, with firms in these sectors charging significantly higher markups

compared to those in consumer and manufacturing industries. In recent years, markups

in the health sector have reached levels as high as 1.6. The high-tech markup levels were

adversely affected in the early 2000s due to the dot-com bubble, and there were low markups

around the 2008 crisis. However, in general, high-tech displayed a similar pattern to the
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Figure 8: Average Markup for Fama-French 5 Industries

Note: This figure shows the annual average markup rates for different sectors. The estimated firm-level

markups are averaged across firms within a year for each sector. The error bars indicate 95% confidence

intervals calculated using bootstrap (100 iterations)

health sector. Notably, when considering these sectors, intangible capital emerges as the

primary component of their production. This observation suggests a potential link between

the firms’ intangible intensity and the markup levels they charge.

Figure 9 displays the average markup rates charged by firms based on their intangible

intensity. I rank firms by their intangible intensity within each sector and year. I calculate

the average markup rates for each decile within a sector and year, then average across

sectors and years within each decile. The figure reveals that low intangible intense firms

charge approximately 1.1, while the most intangible-intensive firms charge around 1.35. This

pattern holds across increasing levels of intangible intensity, indicating a positive relationship

between markup levels and the intangible intensity of firms. This result may be attributed

to the scalability feature of intangibles. As intangible assets enable large firms to grow more

rapidly, increased investments in intangible assets may grant them market power within their

sector, allowing them to charge higher markups.
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Figure 9: Average Markup by Intangible Intensity

Note: This figure shows markups by firm decile ranked by intangible intensity. Intangible intensity is defines

as
Kint

it

Kit+Kint
it

. 1 represents the least intangible intense and 10 is the most intangible intense firms. The average

elasticity for each decile within an industry-year is estimated first, then these estimates are averaged across

industry-year bins.

30



To comprehensively account for the various factors that influence markup rates, I conduct

a regression analysis that incorporates several key firm control variables. These include

the firm’s market share within its industry, age, profit level, leverage, and company size,

alongside firm, year, and sector-time fixed effects. By integrating these control variables

into the analysis, I aim to gain a deeper understanding of the relationship between markup

rates and intangible intensity, recognizing that intangible intensity alone may not be the sole

determinant of markup rates.

Table 1 reveals a significantly positive association between intangible intensity and markup

rates, even after controlling for various firm-level control variables. The first column of the

table includes control variables but no fixed effects. In this specification, a 1% increase in

intangible intensity corresponds to an 8.2% increase in markup rates. However, when firm

fixed effects are introduced in the second column, this elasticity decreases to 3.6%. With

the inclusion of both firm and time fixed effects in the third column, the elasticity becomes

3.47%. Finally, in the fourth column, which incorporates firm and sector-year fixed effects,

the elasticity stands at 3%. These results indicate that firms with higher intangible intensity

tend to exhibit higher markup rates. This suggests that the recent surge in intangible capital

can potentially be a contributing factor to the recent increase in market concentration, as

firms have progressively increased their intangible intensity over the last decades.
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Table 1: Relationship between Markup and Intangible Intensity

Markup Markup Markup Markup

Intangible Intensity 0.0823∗∗∗ .0369∗∗∗ .0347∗∗∗ .0305∗∗∗

(0.001) (.002) (.002) (0.001)

Controls yes yes yes yes

Firm FE no yes yes yes

Year FE no no yes no

Sector-year FE no no no yes

Adjusted R2 0.247 0.815 0.826 0.842

Standard errors in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

7 Robustness Check

7.1 Controlling for the Product Demand

One concern about the Compustat data is that the input and output variables are measured

in revenue. In other words, the output in our regression becomes PQ where P is the product

price and Q is the quantity produced. Similarly, intangible capital is Kint
it = P int

t Qint
it ,

Kit = P k
t Q

k
it and Mit = Pm

t Qm
it where P int

t , P k
t , Pm

t are the price of intangible capital,

capital and material, respectively. Note that as the input market is assumed to be perfectly

competitive, the input price will be constant across the firms. By deflating the factor inputs,

I control input prices, ensuring that the quantity of factor inputs is measured. However, since

the output market is imperfectly competitive, even if I deflate the sales, the output price

variation will not be captured. Thus, after deflating the variables the estimation becomes

Rit

Pt

=
PitQit

Pt

= Ft(Q
k
it, Q

int
it , ht(ω

L
itLit), Q

m
it )exp(ω

H
it )exp(ϵit) (7.1)

where Rit the revenue of the firm i in year t.

I follow Klette and Griliches (1996) to control for the price variation among the firms.
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Under the CES demand aggregator, the demand for each product is

Qit =

(
Pit

Pt

)−σ

Qtexp(ϵ
d
it) (7.2)

where σ is the elasticity of substitution among the products, Qt is the aggregate demand

in the sector, and ϵdit is an idiosyncratic demand shock. Rearranging the equation 7.2 the

deflated output price becomes

Pit

Pt

=

(
Qit

Qt

)−1/σ

exp((ϵdit)
1/σ) (7.3)

Substituting the equation 7.3 into the equation 7.1, the logarithm of the equation 7.1 becomes

rit = (1− 1

σ
)ft(Q

k
it, Q

int
it , ht(ω

L
itLit), Q

m
it ) + (1− 1

σ
)ωH

it +
1

σ
qt +

1

σ
ϵdit + (1− 1

σ
)ϵit (7.4)

where rit is the logarithm of the deflated revenue, qit is the logarithm of Qit and qt is the

logarithm of Qt. This equation states that when revenue is used for the production function

estimation, the coefficient estimates become biased as we multiply the production function

by 1 − 1
σ
and we have additional control variable which is the total industry demand. In

order to isolate the interaction between demand and production coefficients, I estimate the

equation 7.4 as follows. I proceed similar estimation strategy as described in the estimation

strategy section. I, additionally, include the size of sector qt as an additional control variable.

I first obtain the estimate for σ from this regression and then correct the elasticities by 1− 1
σ
.

33



Table 2: Relationship between Markup and Intangible Intensity

Markup Markup Markup Markup

Intangible Intensity 0.108∗∗∗ .092∗∗∗ .069∗∗∗ .067∗∗∗

(0.001) (.008) (.002) (0.001)

Controls yes yes yes yes

Firm FE no yes yes yes

Year FE no no yes no

Sector-year FE no no no yes

Adjusted R2 0.205 0.815 0.846 0.872

Standard errors in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 2 demonstrates the robustness of my results after accounting for price variations across

firms. In the first column, controlling for firm characteristics reveals that firms investing more

in intangible assets charge a 10% higher markup. The second column introduces firm fixed

effects, while the third column includes both firm and time fixed effects. The last column

incorporates firm and sector-year fixed effects. Across all specifications, the consistent trend

emerges: as a firm’s intangible intensity increases, the markup it charges also rises. This

finding holds true even when accounting for various fixed effects, highlighting the robust

relationship between intangible investments and markup rates. Thus, my results are robust

even after controlling for the price variation modeling the demand side.

8 Conclusion

This study estimates returns to intangible capital heterogeneity using nonparametric pro-

duction functions. I find that large firms tend to have higher returns from intangible assets

compared to their smaller counterparts, indicative of a scalability feature associated with

intangibles. Furthermore, while sectoral differences exist in the benefits of intangible assets,

the pattern of increasing returns with firm size is consistent across all sectors. Moreover,

I demonstrate that firms improves their productivity by leveraging the knowledge stock of
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their rivals. Firms in the health sector benefit the most from their competitors’ knowledge

stock, while manufacturing firms do not share the same advantage. Finally, the positive

correlation between markup rates and intangible intensity offers a potential explanation for

the recent rise in market concentration within the US economy.

Appendix

A Proofs

A.1 Proof of Equation 2.3

The firms minimize their flexible inputs as physical and intangible capital are predetermined

variables. They optimize their level to produce at least planned output, Ȳit. The cost

minimization problem, then, becomes:

min
Lit,Mit

{
pLt Lit + pMt Mit : E[Ft(Kit, K

int
it , ht(ω

L
itLit,Mit))exp(ω

H
it )exp(ϵit)|Iit] ≥ Ȳit

}
(A.1)

By the timing assumption, as capitals and ωit and ωL
it are known, the cost problem turns out

min
Lit,Mit

{
pLt Lit + pMt Mit : Ft(Kit, K

int
it , ht(ω

L
itLit,Mit))exp(ω

H
it )E[exp(ϵit)Iit] ≥ Ȳit

}
This problem can be written as the choice of effective labor rather than labor. L̄it = Litω

L
it

is defined as the effective labor. Defining quality adjusted wages pLit =
pLt
ωL
it
I can now rewrite

the problem in terms of effective labor, L̄it

min
L̄it,Mit

{
p̄LitL̄it + pMt Mit : Ft(Kit, K

int
it , ht(L̄it,Mit))exp(ω

H
it )E[exp(ϵit)] ≥ Ȳit

}
(A.2)

These two problems are equivalent as I just redefine the optimization problem with effective

labor and labor productivity ωL
it is known by the firms at time t. For easy notation, defining

Ỹit =
Ȳit

E[exp(ϵitIit]exp(ωH
it )

the cost problem becomes

Ct(Kit, K
int
it , Ȳit, p

L
it, p

M
t , ωH

it ) = min
L̄it,Mit

{
p̄LitL̄it + pMt Mit : Ft(Kit, K

int
it , ht(L̄it,Mit)) ≥ Ỹit

}
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As Ft() is a homogeneous function in ht(), I can invert Ft() function in ht(). As the objective

function is linear I can reconstruct the problem as

Ct(Kit, K
int
it , Ȳit, p

L
it, p

M
t , ωH

it ) = min
L̄it,Mit

{
p̄LitL̄it + pMt Mit : ht(L̄it,Mit) ≥ F−1

t (Kit, K
int
it , Ỹit)

}
As Kit, K

int
it , ωH

it and Ȳit is given at time t, the problem can be rewritten as

Ct(Kit, K
int
it , Ȳit, p

L
it, p

M
t , ωH

it ) = F−1
t (Kit, K

int
it , Ỹit) min

L̄it,Mit

{
p̄LitL̄it + pMt Mit : ht(L̄it,Mit) ≥ 1

}
Therefore, the cost minimization problem pins down to

Ct(Kit, K
int
it , Ȳit, p

L
it, p

M
t , ωH

it ) = C1t(Kit, K
int
it , Ȳit, ω

H
it )C2t(p

L
it, p

M
t )

where I redefine F−1
t (), C1t(Kit, K

int
it , Ȳit, ω

H
it ) = F−1

t (Kit, K
int
it , Ỹit)minL̄it,Mit

. C2t is the

results of minimization problem. Since pLit and pMt are the only state variables left under the

cost minimization problem, the minimization problem will only be a function of them. In

other words, minimization part will be C2t(p
L
it, p

M
t ).

Using Shephard’s Lemma, the firms’ optimal material and labor demand will be a deriva-

tive of the minimized cost function with respect to the corresponding prices, i.e.

Mit =
∂Ct(Kit, K

int
it , Ȳit, p

L
it, p

M
t , ωH

it )

∂pMt
= C1t(Kit, K

int
it , Ȳit, ω

H
it )

∂C2t(p
L
it, p

M
t )

∂pMt

L̄it =
∂Ct(Kit, K

int
it , Ȳit, p

L
it, p

M
t , ωH

it )

∂pLit
= C1t(Kit, K

int
it , Ȳit, ω

H
it )

∂C2t(p
L
it, p

M
t )

∂pLit

As the first part of the cost minimization problem, C1t(Kit, K
int
it , Ȳit, ω

H
it ) does not depend

on flexible input prices, I factor out when taking derivatives. I will only need to take the

derivative of C2t(p
L
it, p

M
t ) to find the flexible input demand. Taking the ratio between material

and labor demand, the equations above becomes

Mit

L̄it

=
∂C2t(p

L
it, p

M
t )/∂pMt

∂C2t(pLit, p
M
t )/∂pLit

The material-to-effective labor ratio only depends on the factor input prices. Replacing the

effective labor L̄it = Litω
L
it into the equation, material-to-labor ratio becomes

Mit

Lit

=
∂C2t(p

L
it, p

M
t )/∂pMt

∂C2t(pLit, p
M
t )/∂pLit

ωL
it
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Note that this function only depends on the input prices and labor productivity, ωL
it. Thus,

the flexible input ratio becomes

Mit

Lit

= rt(p
L
t , p

M
t , ωL

it) = rt(ω
L
it)

where rt() is an unknown function. As rt() function is time-varying, and input prices are

constant across firms due to the competitive input market, these prices will be a constant in

this function. Therefore, the material-to-labor ratio becomes a function of labor augmenting

productivity ωL
it.

A.2 Proof of Equation 2.4

I will now show that the material-to-labor ratio is monotonous in ωL
it in order to write labor

productivity as a function of the material-to-labor ratio.

Since the cost function is a homogeneous of degree with one, the derivative of the cost

function with respect to the input prices would be homogeneous of degree zero. Using this

property, dividing by pMt will not change the partial derivative of the cost function with

respect to flexible inputs. Therefore, I can rewrite it as follows

Mit

Lit

=
∂C2t(

pLit
pMt

,
pMt
pMt

)/∂pMt

∂C2t(
pLit
pMt

,
pMt
pMt

)/∂pLit
ωL
it =

∂C̃2t(
pLit
pMt

)/∂pMt

∂C̃2t(
pLit
pMt

)/∂pLit
ωL
it

where C̃2t(
pLit
pMt

) = C2t(
pLit
pMt

, 1). For the sake of easy notation, let C̃2t(
pLit
pMt

)/∂pMt = C̃2m,

C̃2t(
pLit
pLit
)/∂pMt = C̃2l, and M̃it = Mit

Lit
. Taking the logarithm of the equation I can rewrite

it as

log(M̃it) = log

(
C̃2m

C̃2l

)
+ log(ωL

it)

Taking the derivative of the equation with respect to log(ωL
it)

∂log(M̃it)

∂log(ωL
it)

=
∂C̃2m/C̃2l

∂log(pLit/p
M
t )

log(∂pLit/p
M
t )

∂log(ωL
it)

+ 1

Since
log(∂pLit/p

M
t )

∂log(ωL
it)

= 1 and ∂C̃2m/C̃2l

∂log(pLit/p
M
t )

= −σ(ωL
itLit,Mit) is the elasticity of substitution be-

tween effective labor and material, the equation becomes

∂log(M̃it)

∂log(ωL
it)

= −σ(ωL
itLit,Mit) + 1
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From the elasticity substitution assumption σ(ωL
itLit,Mit) > 1 or σ(ωL

itLit,Mit) < 1, the

derivative of M̃ with respect to ωL
it is either positive or negative. IT will never become

zero. This implies that M̃it is strictly increasing or decreasing function of ωL
it. Thus, M̃it is

monotone in ωL
it. Then, we can invert the rt(ω

L
it) function in ωL

it, then labor productivity, ωL
it

becomes

ωL
it = r−1

t

(
Mit

Lit

)
= r−1

t (M̃it)

Thus, this shows that labor productivity is a function of the material-to-labor ratio.

A.3 Proof of Equation 4.1

The cost minimization problem of the firm i at time t is

min
Lit,Mit

{
pLt Lit + pMt Mit : Ft(Kit, K

int
it , ht(ω

L
itLit,Mit))exp(ω

H
it )E[exp(ϵit)Iit] ≥ Ȳit

}
The first order condition for material and labor is

pMt = λit
∂Ft(Kit, K

int
it , ht(ω

L
itLit,Mit))exp(ω

H
it )E[exp(ϵit)Iit]

∂Mit

pLt = λit
∂Ft(Kit, K

int
it , ht(ω

L
itLit,Mit))exp(ω

H
it )E[exp(ϵit)Iit]

∂Lit

where λit is the Lagrange multiplier on the constraint. λit will capture the firms’ marginal

cost. Multiplying the first equation by Mit

pitYit
and the second equation by Mit

pitYit

pMt Mit

pitYit

= λit
∂Ft(Kit, K

int
it , ht(ω

L
itLit,Mit))exp(ω

H
it )E[exp(ϵit)Iit]

∂Mit

Mit

pitYit

pLt Lit

pitYit

= λit
∂Ft(Kit, K

int
it , ht(ω

L
itLit,Mit))exp(ω

H
it )E[exp(ϵit)Iit]

∂Lit

Lit

pitYit

The right-hand side of the first equation becomes the material share in revenue. Similarly,

the right-hand side of the second equation becomes labor share in revenue. Let’s denote them

as αM
it and αL

it as the material and labor share in revenue, respectively. On the left-hand

side of the equations, ∂Ft()
∂Mit

Mit

Yit
is the output elasticity of material, and similarly ∂Ft()

∂Lit

Lit

Yit
is

the output elasticity of labor. Let’s denote ϵLit, and ϵMit as the labor and material elasticity,

respectively. Thus, we have

αM
it =

λit

pit
ϵMit

αL
it =

λit

pit
ϵLit (A.3)
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Taking their ratios we will have
αM
it

αL
it

=
ϵMit
ϵLit

(A.4)

This shows that the ratio of revenue shares of flexible inputs is equal to their ratio of output

elasticities.

A.4 Proof of Equation 4.3

In the equation A.5, λit

pit
is equal to the inverse markup because the markup is defined as

price over marginal cost. Since λit is the marginal cost of the firm markup becomes µit =
pit
λit

by definition. Therefore, we can rewrite equation A.5 as

αM
it =

ϵMit
µit

αL
it =

ϵLit
µit

(A.5)

Rearranging the equations markups can be rewritten as

µit =
ϵMit
αM
it

=
ϵLit
αL
it

The markup charged by the firms equals the ratio of their flexible input elasticity to the

flexible input’s share in revenue.

A.5 Proof of Proposition 4.1

For the production function,

yit = ft(Kit, K
int
it , Litht(ω

L
it, M̃it)) + ωH

it + ϵit

The material and labor elasticity are

θMit = ft3ht2Mit

θLit = ft3(ht − ht2M̃it)Lit

where ft3 is the derivative of ft function with respect to the third arguments and ht2 is the

derivative of ht function with respect to the second argument. The sum of labor and material
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elasticity is

θMit + θLit = ft3ht2Mit + ft3(ht − ht2M̃it)Lit = ft3htLit = ft3h̄tLit

Since the sum of elasticities do not depend on the derivative of ht function I can replace ht()

with h̄t(). The last equality comes from that fact.

B Data and Estimation

B.1 Estimation Strategy

This section provides a detailed estimation strategy employed. I first construct the control

variables, u1
it and u2

it to control for Hicks-neutral and labor augmenting productivity. u1
it is

defined in equation 3.1 as

u1
it = FM̃it|Wit−1,

∑
j∈I,j ̸=i Rjt−1

(
M̃it | Wit−1,

∑
j∈I,j ̸=i

Rjt−1

)
u1
it is computed as a conditional CDF of M̃ given Wit−1,

∑
j∈I,j ̸=i Rjt−1. However, the depen-

dent variable, M̃it is a continuous variable so I can’t directly apply the logistic regression.

To do that, I first split the data into year and sector subsets since I do production function

estimation at the sector year level. I then partition the sub-sample data (within a year and

sector) into 500 parts. In cases where 500 partitioning is not feasible I partition them into

the one tenth of the sample size2. At the boundary points of each discretized data points

(named as q ∈ Q) I construct the logistic regression as follow

P (M̃it ≤ q | Wit−1 = w,
∑

j∈I,j ̸=i

Rjt−1 = r) = s1t(q, w, r)

The dependent variable becomes a discrete variable depending on whether M̃it is less than

q. I approximate the s2t function with the second-order polynomials3. I, then, estimate the

predicted CDF for each q points using logistic regression. I compute the remaining points

using a linear interpolation.

2 I use different partition size such as 5. They don’t change the results
3 Third-order approximation gives the same results.
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To estimate the u2
it I follow the similar strategy as u1

it. The equation 3.3 defines u2
it as

follow

u2
it = FMit|Kit,Kint

it ,Wit−1,
∑

j∈I,j ̸=i Rjt−1

(
Mit | Kit, K

int
it ,Wit−1,

∑
j∈I,j ̸=i

Rjt−1

)
As in u1

it, the dependent variable Mit is not a discrete variable, it is a continuous variable. I

partition the data 500 parts at the sector year level. If the data is not feasible I split it into

the one-tenth of the data. At each q level, I do

P (Mit ≤ q | Kit = k,Kint
it = kint,Wit−1 = w,

∑
j∈I,j ̸=i

Rjt−1 = r, u1
it = u1) = s2t(q, k, k

int, w, r, u1)

The dependent variable becomes a discrete variable depending on whether Mit is less than

q. I similarly approximate s2t function with second order polynomials. I then find the CDF

at the points where Mit = q. For the remaining points, I compute the linear interpolation

so that I have an estimator for u2
it at each point in the data.

After estimating u1
it and u2

it, I can now estimate the productions functions. I estimate

the productions at each sector over 7-year rolling windows in the equation 5.4

yit = ft(Kit, K
int
it , Lith̄t(M̃it)) + c2t

(
Wit−1,

∑
j∈I,j ̸=i

Rjt−1, u
1
it, u

2
it

)
+ ϵit

If I know h̄t(.) function, I can estimate the regression using polynomial approximations for

ft() and c2t() functions. I first approximate the ht() function with third-order polynomials.

ht(m̃it) = α1tm̃
2
it + α3tm̃

3
it

I approximate the ft() function with second-order polynomials. For the sake of easy notation,

let’s define vit = lit + h(mit). With the approximated ht() given, I can write ft() as follow

ft() = β0t + β1tkit + β2tk
int
it + β3tvit + β4tk

2
it + β5tkitk

int
it + β6tkitvit

+ β7t(k
int
it )2 + β8tk

int
it vit + β9tv

2
it

where β’s represent the coefficients of the polynomial approximations. I have time subscripts

because I estimate them over 7 year rolling windows within each sector. These coefficients

will be sector-specific and time varying. I similarly approximate c2t and c3t with second-order
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polynomials. I do then minimize the moment conditions with these approximated functions

in equation 5.7.

I estimate the production function parameters β’s and c2() and c3() coefficients given α’s.

I first guess α values and then estimate the moment conditions using the least squares. I

iterate the loops to minimize the moment conditions in equation 5.7. This will give me the

β coefficients and productivity function coefficients. This is not a very hard loop because

given alphas it is straightforward to find other parameters. Therefore, in the loops we are

minimizing the OLS estimates to find 3 α parameters to minimize the residuals.

After estimating the parameters of f2() and c2 functions, I can compute the elasticities as

defined in the identification section. The output elasticity of intangible and tangible capital

is the derivative of estimated ft function with respect to the capital and intangible capital,

respectively. Since I know that the approximated the ft function the capital and intangible

elasticity are

θkit = β1t + 2β4tkit + β5tk
int
it + β6tvit

θintit = β2t + β5tk
int
it + 2β7tk

int
it + β8tvit

Due to the input heterogeneity this generates elasticity heterogeneity across firms. For the

identification of flexible inputs I similarly take the derivative of ft function with respect to

v, this would give me the sum of flexible input elasticities. Multiplying with the flexible

share in revenue I compute the labor and material elasticities. The productivity elasticity

of the external knowledge is the derivative of c2 function with respect to external knowledge

capital. I construct them similar to the output elasticities.

B.2 Data

I use the Compustat data from Standard and Poor’s Compustat North America database

from 1975 to 2020. The Compustat data covers all public firms in the US. The data is

available before 1975, but since intangible asset’s parameters are estimated using a data

from 1975 in Ewens et al. (2019), I exclude the firms before 1975. I clean the data as

standard in the literature. I drop the firms that are not operating in the US firms. I drop
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financial and utility companies with SIC codes between 6000-7000, and 4900-5000. I remove

the firms with zero or negative sales, cogs, ppegt, intangible capital, xsga and employment.

I further exclude too small firms having employees less than 10. I, then, drop the firms that

do not have naics industry classification codes. I remove the firms at the bottom 1% of the

variables to omit the outliers. I do not exclude top 1% because some of the giant firms such

as Amazon, Apple exclude from the data. Therefore, I only trim the data at the bottom 1%.

In the production function estimation I need output, physical capital, intangible capital,

labor, material and knowledge capital. I use sale(Sales/Turnover (Net)) variable in Com-

pustat for output. For the physical capital I use ppegt(Property, Plant and Equipment -

Total (Gross)) variable. I use cogs(cost of goods sold) variable for the material. emp (Em-

ployees in the Compustat captures the labor in the production function. In the data section

I explain how to construct the intangible capital. Knowledge capital is the capital stock

constructed xrd (Research & Development Expense variables in Compustat. I deflate all

the variables with corresponding industry specific deflators in the BEA. Table A1 represents

some summary statistics for the variables used in my estimations(sales, ppegt, intantible

capital, emp) after deflating and cleaning the data. Table A2 respresents the intangible ratio

summary statistics. On average intangible capital to tangible capital ratio is 0.44 showing

the importance of intangible capital in the firm’s capital stocks. Table A3 shows the median
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firm’s intangible ratio, firm’s assets, age and investment rate and employment level.

Table A1: Summary Statistics - Compustat Variables

Mean P25 P50 P75 Count

Assets - Total (million $) 2701.215 30.68 129.815 736.701 225924

Market Value (million $) 4516.595 45.864 195.586 1152.329 194817

Sales/Turnover (Net) (million $) 2173.114 29.588 132.168 709.678 225924

Employees (thousands) 10.181 .257 1.15 5.177 211522

Property, Plant and Equipment - Total (Net) (million $) 938.432 5.122 27.214 198.112 225526

Capital Expenditures (million $) 165.572 1.075 5.908 37.727 223374

Intangible Capital (million $) 593.076 6.057 27.466 137.155 225924

Research and Development Expense (million $) 51.925 0 0 5.163 225924

Selling, General and Administrative Expense (million $) 289.917 4.703 19.64 96.428 225924

Other Intangibles (million $) 169.731 0 0 .045 225924

Cash per Assets - Total .164 .026 .078 .215 225804

Leverage per Assets - Total .271 .062 .225 .389 225122

Tobin’s Q 1.092 .184 .62 1.287 195043

Dividends per Assets - Total .012 0 0 .012 225924

Repurchases per Assets - Total -.043 -.008 0 0 206447

Total Payouts per Assets - Total -.03 -.005 0 .018 206447

Retained Earnings per Assets - Total -.387 -.178 .132 .339 221681

Note: This table documents the summary statistics of some selected firm-level variables in the Compustat. P25:

25th percentile, P50: median and P75: 75th percentile.

Table A2: Summary Statistics - Intangible Capital Ratio

Mean Sd P25 P50 P75 Min Max Count

Intangible Ratio .446 .292 .184 .486 .7 0 1 202315

Note: This table documents the summary statistics of intangible ratio.

p25: 25th percentile, p50: median and p75: 75th percentile.
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Table A3: Summary Statistics by Intangible Capital Ratio Quintiles

Quintiles Intangible Ratio Total Asset Age Total Investment Rate Employment

Q1 0 702 22 .14 1.5

Q2 .22 272 19 .23 1.7

Q3 .5 273 20 .29 1.5

Q4 .72 145 19 .33 1.1

Q5 .91 41 16 .34 .25

Total .49 185 19 .27 1

Note: This table documents the pool sample median of some selected firm-level vari-

ables within each quintile of intangible capital ratio. Q1 is the bottom quintile and Q5

is the top quintile in terms of intangible capital ratio. Intangible ratio is defined as

Intangible capital stock
Intangible capital stock + Tangible capital stock where intangible capital stock is constructed based on

the perpetual inventory method of Peters and Taylor (2017b). Tangible capital stock is the

total net plant,property and equipment.
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