Market Concentration, Income Inequality and Business Cycles

Yusuf Ozkara

November 29, 2023

Introduction

Motivating facts in the U.S. economy:

- Increasing market concentration Markup Profit
 De Loecker et al. (2020), Basu (2020), Syverson (2018)
- Rising income and wealth inequality Shares Income
 Piketty (2013), Kaplan et al. (2017), Bilbiie et al (2022)
- Heterogeneous cyclicality cyclicality Production
 Crouzet et al. (2020), Winberry et al. (2020)

Research question: Do rising market concentration and income/wealth inequality affect business cycles?

- 1. IRFs
- 2. Transmission mechanism of aggregate shocks

Introduction

Motivating facts in the U.S. economy:

- Increasing market concentration Markup Profit
 De Loecker et al. (2020), Basu (2020), Syverson (2018)
- Rising income and wealth inequality Shares Income
 Piketty (2013), Kaplan et al. (2017), Bilbiie et al (2022)
- Heterogeneous cyclicality · cyclicality · Production
 Crouzet et al. (2020), Winberry et al. (2020)

Research question: Do rising market concentration and income/wealth inequality affect business cycles?

- 1. IRFs
- 2. Transmission mechanism of aggregate shocks

Yusuf Ozkara

Preview of Empirical Results

Stylized Facts

- 1. increasing markups/profits
- 2. increasing income and wealth inequality
- 3. heterogonous cyclicality and factor inputs
- \Rightarrow Hypothesis: (1) + (2) + (3) would affect macro business cycles. How?

Literature

Business dynamism

Andrews et al. (2016), Gutierrez & Philippon (2017), Decker et al. (2018), Akcigit & Ates (2019), Crouzet & Eberly (2019), Autor et al. (2020), De Loecker et al. (2021)

\Rightarrow This paper: the role of business dynamism in business cycles

Consumer Heterogeneity

Kaplan et al. (2018), Auclert et al.(2020), Bilbiie et al.(2022), Werning (2015), Mian et al. (2021), Straub (2019), Ahn et. al (2018), Auclert et al. (2021), Violante et al. (2020)

 \Rightarrow This paper: the role of firm heterogeneity

Firm Cyclicality

Crouzet & Mehotra (2020), Koby & Wolf (2020), Ottonello & Winberry (2020), Van Reenen et al. (2021), Cloyne et al. (2018), Caballero & Engel (1999)

\Rightarrow This paper: the role of consumption (mpc) distribution

Model

Conclusion

Motivating Model

Goal:

Highlight the key mechanisms

Setup:

- Continuum of households over [0,1]
- λ fraction consume all their income (poor hand-to-mouth) (P)
- 1λ owns all the asset and equity (R)
- Poor only works
- Rich works and trade assets in complete market

Conclusion 00

Hand-to-mouth Agents' Problem

$$\begin{array}{l} \max_{\mathcal{C}_{t}^{p},\mathcal{H}_{t}^{p}} \ \log(\mathcal{C}_{t}^{p}) - \chi \frac{(\mathcal{H}_{t}^{p})^{1+\eta}}{1+\eta} \\ \text{s.t.} \ \mathcal{P}_{t}\mathcal{C}_{t}^{p} \leq w_{t}\mathcal{H}_{t}^{p} \end{array}$$

The optimal consumption and labor-supply

$$H_t^p = \left(\frac{1}{\chi}\right)^{\frac{1}{1+\eta}}$$
$$C_t^p = \frac{W_t}{P_t} \left(\frac{1}{\chi}\right)^{\frac{1}{1+\eta}}$$

The log-linearization around steady-steady

(

$$h_t^p = \mathbf{o}$$

 $r_t^p = w_t - p_t = \omega_t$

Yusuf Ozkara

Market Concentration, Income Inequality and Business Cycles

 Conclusion

Saver's Problem

$$\max_{C_t^r, H_t^r, B_{t+1}, K_{t+1}} log(C_t^r) - \chi \frac{(H_t^r)^{1+\eta}}{1+\eta}$$

s.t.
$$P_t C_t^r + \frac{B_{t+1}}{1-\lambda} + \frac{K_{t+1}}{1-\lambda} \le w_t H_t^s + (1+r_t) \frac{B_t}{1-\lambda} + (R_t + 1 - \delta) \frac{K_t}{1-\lambda} + \frac{D_t}{1-\lambda}$$

The log-linearized optimal decisions are

$$\eta h_t^r = \omega_t - c_t^r$$

$$c_t^r = c_{t+1}^r - E_t(r_t - \pi_{t+1})$$

$$c_t^r = c_{t+1}^r - \beta R^* E_t(r_t^k - \pi_{t+1})$$

Market Concentration, Income Inequality and Business Cycles

Aggregate Consumption and Labor Supply

Aggregate Labor Supply

$$H_t = \lambda H_t^p + (1 - \lambda) H_t^r$$

 $\Rightarrow h_t = (1 - \lambda) \frac{H^r}{H} h_t^r$

Aggregate Consumption

$$C_{t} = \lambda C_{t}^{p} + (1 - \lambda)C_{t}^{r}$$
$$\Rightarrow c_{t} = \lambda \frac{C^{p}}{C}c_{t}^{p} + (1 - \lambda)\frac{C^{r}}{C}c_{t}^{r}$$

Euler Equation for Consumption

Combining total consumption, labor supply and Euler Equation

$$c_t = c_{t+1} - E_t(r_t - \pi_{t+1}) - \eta \frac{\lambda}{1-\lambda} \frac{C^p}{C} \frac{H}{H^r}(h_{t+1} - h_t)$$

Derivation Consumption

Firm's Problem

Final good producers aggregates using CES

$$Y_t = \left(\int_0^1 Y_{i,t}^{\frac{\epsilon-1}{\epsilon}} di\right)^{\frac{\epsilon}{\epsilon-1}}$$

Each intermediate good producer

$$\max_{P_{it},K_{it},H_{it}}P_{it}Y_{it}-R_tK_{it}-w_tH_{it}$$

subject to

$$Y_{it} = \left(\frac{P_{it}}{P_t}\right)^{-\epsilon} Y_t \le A_{it} K_{it}^{\alpha} H_{it}^{1-\alpha} - F$$

Introduction 000

Firm's Decision

The optimization problem with Calvo pricing

$$\pi_t = \beta \pi_{t+1} + \kappa m c_t$$
$$m c_t = \alpha r_t^k + (1 - \alpha) w_t - z_t$$

where
$$\kappa = \frac{(1-\theta)(1-\theta\beta)}{\theta}$$

For a cost minimizing firm,

$$\gamma = rac{\mathsf{AC}}{\mathsf{MC}} = \mu(\mathbf{1} - \mathbf{s}_{\pi}) = rac{\mathsf{Y} + \mathsf{F}}{\mathsf{Y}}$$

The aggregate production

$$\mathbf{y}_t = \mu(\mathbf{1} - \mathbf{s}_{\pi}) \left(\alpha \mathbf{k}_t + (\mathbf{1} - \alpha) \mathbf{h}_t + \mathbf{z}_t \right)$$

Market Clearing Condition

Goods Market

 $\begin{aligned} Y_t &= C_t + I_t \\ \Rightarrow y_t &= s_c c_t + (1-s_c) i_t \end{aligned}$

Bond Market

$$B_t = 0$$

Euler Equation for Output

• Using
$$\frac{WH}{PY} = (1 - s_{\pi})(1 - \alpha)$$
 and MCC
 $y_t = y_{t+1} - \frac{s_c}{\phi} E_t(r_t - \pi_{t+1}) - \frac{(1 - s_c)}{\phi}(i_{t+1} - i_t) + \frac{1 - \phi}{\phi}\mu(1 - s_{\pi})(z_{t+1} - z_t)$

$$+ \alpha \frac{1 - \phi}{\phi}\mu(1 - s_{\pi})(k_{t+1} - k_t)$$

where $\phi = \mathbf{1} - \eta \frac{\lambda}{\mathbf{1} - \lambda} \frac{\mathbf{1}}{\mu}$

Amplification Channels

▶
$$\lambda \rightarrow 0 \Rightarrow \phi \rightarrow 1$$
 (RANK)

$$y_t = y_{t+1} - s_c E_t (r_t - \pi_{t+1}) - (1 - s_c) (i_{t+1} - i_t)$$

•
$$\alpha \rightarrow 0 \Rightarrow s_c \rightarrow 1$$
 (TANK)

$$y_t = y_{t+1} - \frac{1}{\phi} E_t(r_t - \pi_{t+1}) + \frac{1 - \phi}{\phi} \gamma(z_{t+1} - z_t)$$

•
$$\lambda \in (0, 1)$$
 and $\alpha \in (0, 1)$

$$y_{t} = y_{t+1} - \frac{s_{c}}{\phi} E_{t}(r_{t} - \pi_{t+1}) - \frac{(1 - s_{c})}{\phi} (i_{t+1} - i_{t}) + \frac{1 - \phi}{\phi} \gamma (z_{t+1} - z_{t})$$

Yusuf Ozkara

Market Concentration, Income Inequality and Business Cycles igtarrow

Amplification Channels

▶
$$\lambda \rightarrow 0 \Rightarrow \phi \rightarrow 1$$
 (RANK)

$$y_t = y_{t+1} - s_c E_t (r_t - \pi_{t+1}) - (1 - s_c) (i_{t+1} - i_t)$$

•
$$\alpha \rightarrow 0 \Rightarrow s_c \rightarrow 1$$
 (TANK)

$$y_t = y_{t+1} - \frac{1}{\phi} E_t(r_t - \pi_{t+1}) + \frac{1 - \phi}{\phi} \gamma(z_{t+1} - z_t)$$

•
$$\lambda \in (0, 1)$$
 and $lpha \in (0, 1)$

$$y_{t} = y_{t+1} - \frac{s_{c}}{\phi} E_{t}(r_{t} - \pi_{t+1}) - \frac{(1 - s_{c})}{\phi} (i_{t+1} - i_{t}) + \frac{1 - \phi}{\phi} \gamma (z_{t+1} - z_{t})$$

Yusuf Ozkara

Market Concentration, Income Inequality and Business Cycles ightarrow

Amplification Channels

$$\blacktriangleright \lambda \rightarrow 0 \Rightarrow \phi \rightarrow 1$$
 (RANK)

$$y_t = y_{t+1} - s_c E_t (r_t - \pi_{t+1}) - (1 - s_c) (i_{t+1} - i_t)$$

•
$$\alpha \rightarrow 0 \Rightarrow s_c \rightarrow 1$$
 (TANK)

$$y_t = y_{t+1} - \frac{1}{\phi} E_t(r_t - \pi_{t+1}) + \frac{1 - \phi}{\phi} \gamma(z_{t+1} - z_t)$$

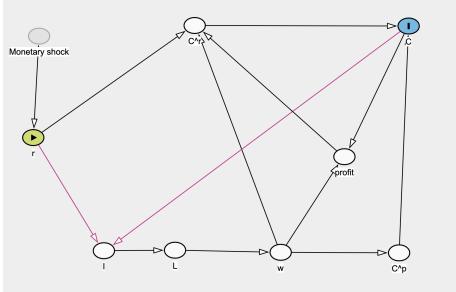
•
$$\lambda \in (0, 1)$$
 and $lpha \in (0, 1)$

$$y_{t} = y_{t+1} - \frac{s_{c}}{\phi} E_{t}(r_{t} - \pi_{t+1}) - \frac{(1 - s_{c})}{\phi} (\dot{i}_{t+1} - \dot{i}_{t}) + \frac{1 - \phi}{\phi} \gamma (z_{t+1} - z_{t}) + \alpha \frac{1 - \phi}{\phi} \gamma (k_{t+1} - k_{t})$$

Yusuf Ozkara

Market Concentration, Income Inequality and Business Cycles arphi

Mechanism(DAG)



Firm Heterogeneity

- There is a continuum of producers over [0,1]
- ξ share large and 1ξ small
- Large firms more productive and uses both capital and labor
- Small firms are less productive and only decide labor

Small Firms' Problem

Production Function

$$f(H_t^l, K_t^l) = e^l Z_t(\bar{K})^{\alpha} (H_t^l)^{1-\alpha}$$

Maximize profit

$$\max_{p_t^l, h_t^l} p_t^l y_t^l - R_t \bar{K} - w_t H_t^l$$

subject to

$$y_t^l = \left(\frac{p_t^l}{P_t}\right)^{-\epsilon} Y_t \le e^l A_t \bar{K}^{\alpha} (H_t^l)^{1-\alpha} - F$$

Introduction

Large Firms' Problem

Production Function

$$Y_t^h = e^h Z_t (K_t^h)^{\alpha} (H_t^h)^{1-\alpha}$$

 $e^h > e^l$. Maximize profits

$$\max_{p_t^h,k_t^h,h_t^h} p_t^h y_t^h - R_t K_t^h - w_t H_t^h$$

subject to

$$y_t^h = \left(rac{p_t^h}{P_t}
ight)^{-\epsilon} Y_t \le e^h A_t (K_t^h)^{lpha} (H_t^h)^{1-lpha} - F$$

Introduction

Conclusion

Total Labor and Capital Demand

Capital Demand

$$K_t = \xi K_t^h + (1 - \xi) \overline{K}$$
$$\Rightarrow k_t = \xi \frac{K^h}{K} k_t^h$$

Labor Demand

$$H_t = \xi H_t^h + (1 - \xi) H_t^l$$
$$\Rightarrow h_t = \xi \frac{H^h}{H} h_t^h + (1 - \xi) \frac{H^l}{H} h_t^l$$

Euler Equation for Output

Combining consumer and firms' problem with MCC

$$y_{t} = y_{t+1} - \frac{s_{c}}{\phi} E_{t}(r_{t} - \pi_{t+1}) - \frac{1 - s_{c}}{\phi} (i_{t+1} - i_{t}) + \frac{1 - \phi}{\phi} \gamma(z_{t+1} - z_{t}) + \frac{1 - \phi}{\phi} \gamma(z_{t+1} - z_{t}) + \frac{1 - \phi}{\phi} \gamma\left(\frac{(1 + \alpha)(\xi + (1 - \xi)\frac{e^{L}}{e^{H}})}{\xi + (1 - \xi)\left(\frac{e^{L}}{e^{H}}\right)^{2(1 - 1/\epsilon)}} - 1\right) (k_{t+1} - k_{t})$$

Outline

Model

Conclusion

Summary

- Inequality and firm heterogeneity matter for business cycles
- Both transmission mechanism and amplification of the aggregate shocks affected

Future Work:

- Solve Philips curve for heterogeneous firms
- Quantify the amplification and propagation mechanisms

Heterogeneous Cyclicality

Theoretical Results

Appendix

Yusuf Ozkara

Market Concentration, Income Inequality and Business Cycles

Heterogeneous Cyclicality

Theoretical Results

Outline

Market Concentration

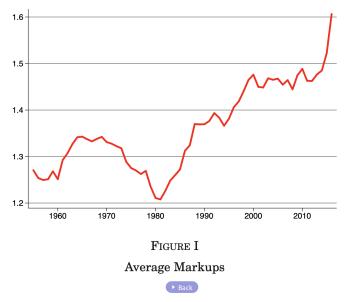
Inequality

Heterogeneous Cyclicality

Heterogeneous Cyclicality

Theoretical Results

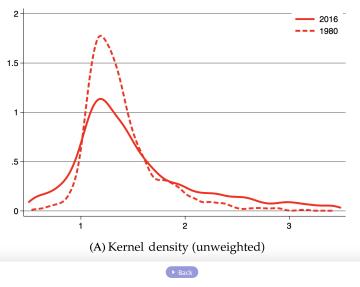
Figure A1: De Loecker et al. (2020)



Heterogeneous Cyclicality

Theoretical Results

Figure A2: De Loecker et al. (2020)

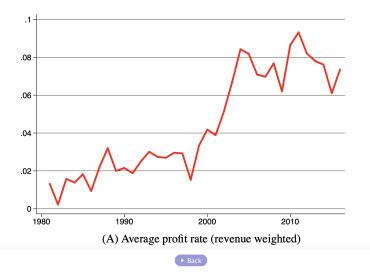


Market Concentration, Income Inequality and Business Cycles

Heterogeneous Cyclicality

Theoretical Results

Figure A3: De Loecker et al. (2020)



Market Concentration

Inequality •0000000 Heterogeneous Cyclicality

Theoretical Results

Outline

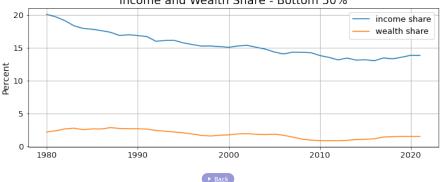
Market Concentration

Inequality

Heterogeneous Cyclicality

Heterogeneous Cyclicality

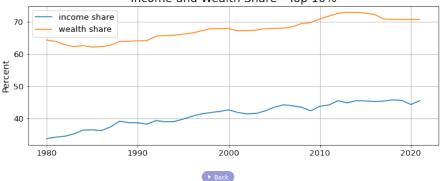
Theoretical Results



Income and Wealth Share - Bottom 50%

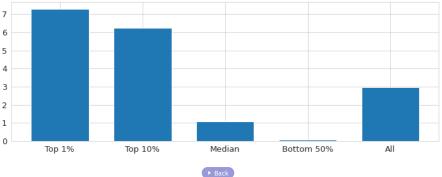
Heterogeneous Cyclicality

Theoretical Results

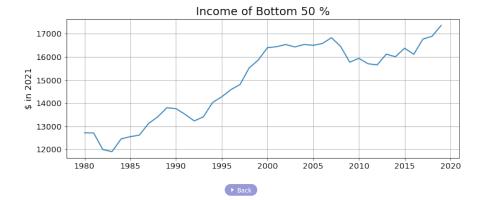


Income and Wealth Share - Top 10%

Heterogeneous Cyclicality



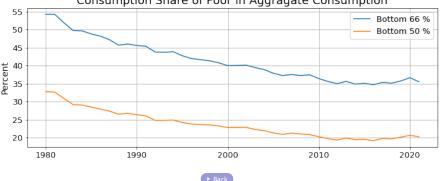
Heterogeneous Cyclicality



Heterogeneous Cyclicality

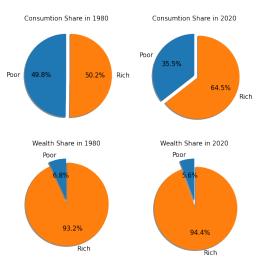
Heterogeneous Cyclicality

Theoretical Results



Consumption Share of Poor in Aggragate Consumption

Heterogeneous Cyclicality



Market Concentration

Inequality 00000000 Heterogeneous Cyclicality

Theoretical Results

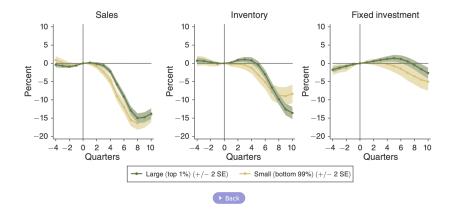
Outline

Market Concentration

Inequality

Heterogeneous Cyclicality

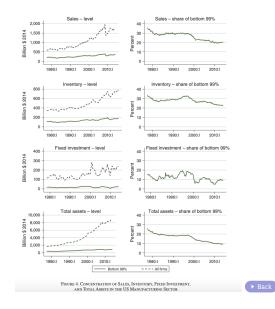
Heterogeneous Cyclicality



Heterogeneous Cyclicality

Theoretical Results

Figure A4: Crouzet et al. (2020)



Yusuf Ozkara

Market Concentration, Income Inequality and Business Cycles

Heterogeneous Cyclicality 0000

Theoretical Results

Employment - share of bottom 99%

Market Concentration

Inequality 00000000 Heterogeneous Cyclicality

Theoretical Results

Outline

Market Concentration

Inequality

Heterogeneous Cyclicality

Market Concentration

Inequality 00000000 Heterogeneous Cyclicality

Theoretical Results

Derivation of EE for Consumption

Rewriting ct

$$c_t^r = \frac{C}{C^s} \frac{1}{1-\lambda} c_t - \frac{\lambda}{1-\lambda} \frac{C^h}{C^r} c_t^h$$
$$c_t^r = \frac{C}{C^r} \frac{1}{1-\lambda} c_t - \frac{\lambda}{1-\lambda} \frac{C^h}{C^r} \omega_t$$
$$c_t^r = \frac{C}{C^s} \frac{1}{1-\lambda} c_t - \frac{\lambda}{1-\lambda} \frac{C^h}{C^r} \left(\frac{\eta}{1-\lambda} \frac{H}{H^r} h_t + c_t^r \right)$$
$$c_t^r = c_t - \eta \frac{\lambda}{1-\lambda} \frac{C^h}{C} \frac{H}{H^r} h_t$$

Back